Algebraic characterization of dendricity

France Gheeraert

December 9, 2024

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone & G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space over A. The following assertions are equivalent:

- X is dendric;
- for each $w \in \mathcal{L}(X)$, $\mathcal{R}_X(w)$ is a basis of F_A .

The protagonists: (unidimensional) minimal shift spaces

Let \mathcal{A} be a finite set called *alphabet*.

Definition

- A shift space X is a
 - closed subset of $\mathcal{A}^{\mathbb{Z}}$
 - stable under the shift map $S: (x_i)_{i \in \mathbb{Z}} \mapsto (x_{i+1})_{i \in \mathbb{Z}}$.

The protagonists: (unidimensional) minimal shift spaces

Let \mathcal{A} be a finite set called *alphabet*.

Definition

- A shift space X is a
 - closed subset of $\mathcal{A}^{\mathbb{Z}}$
 - stable under the shift map $S: (x_i)_{i \in \mathbb{Z}} \mapsto (x_{i+1})_{i \in \mathbb{Z}}$.

Definition The *language* of a shift space *X* is

 $\mathcal{L}(X) = \{ w : \exists x \in X, \exists i \leq j \text{ st. } w = x_i \cdots x_j \}.$

 $\cdots 10010011001001001101100\cdots$

 $\mathcal{E}_X(10)$

 $\cdots 10010011001001001101100\cdots$

 $\cdots 100100 \underline{1100} 1001001101100 \cdots$

 $\cdots 10010011001001101100\cdots$

 $\cdots 10010011001001001101100\cdots$

 $\cdots 10010011001001001101100\cdots$

France Gheeraert

 $\cdots 10010011001001001101100\cdots$

 $\cdots 10010011001001001101100\cdots$

 $\cdots 10010011001001001101100\cdots$

France Gheeraert

Algebraic characterization of dendricity

Definition (Berthé *et al.*)

A word $w \in \mathcal{L}(X)$ is *dendric* (resp., *connected*) if its extension graph is a tree (resp., is connected).

Definition (Berthé et al.)

A word $w \in \mathcal{L}(X)$ is *dendric* (resp., *connected*) if its extension graph is a tree (resp., is connected).

A shift space X is *dendric* if every $w \in \mathcal{L}(X)$ is dendric.

France Gheeraert

 $\cdots 001100200110022001100011\cdots$

The return words to 00 are:

 $\cdots \mid 001100200110022001100011\cdots$

The return words to 00 are:

 $\cdots \mid 0011 \mid 00200110022001100011 \cdots$

The return words to 00 are: 0011

 $\cdots \mid 0011 \mid 002 \mid 00110022001100011 \cdots$

The return words to 00 are: 0011, 002

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022001100011 \cdots$

The return words to 00 are: 0011, 002

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 001100011 \cdots$

The return words to 00 are: 0011, 002, 0022

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 00011 \cdots$

The return words to 00 are: 0011, 002, 0022

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

The return words to 00 are: 0011, 002, 0022, 0

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

The return words to 00 are: 0011, 002, 0022, 0

Definition A *return word* for *w* is a word *u* such that

 $uw \in \mathcal{L}(X) \cap w\mathcal{A}^* \setminus \mathcal{A}^+ w\mathcal{A}^+.$

The set of return words for w is denoted $\mathcal{R}_X(w)$.

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

The return words to 00 are: 0011, 002, 0022, 0

Definition A *return word* for *w* is a word *u* such that

 $uw \in \mathcal{L}(X) \cap w\mathcal{A}^* \setminus \mathcal{A}^+ w\mathcal{A}^+.$

The set of return words for w is denoted $\mathcal{R}_X(w)$.

For the example above,

 $\langle 0011, 002, 0022, 0 \rangle = \langle 0011, 002, 2, 0 \rangle = \langle 0011, 2, 0 \rangle = \langle 11, 2, 0 \rangle$

Tool 1 : NEUTRALITY

Let

$$m_X(w) = \#E_X(w) - \#E_X^L(w) - \#E_X^R(w) + 1.$$

Definition

A word $w \in \mathcal{L}(X)$ is

- neutral if $m_X(w) = 0$;
- weak if $m_X(w) < 0$;
- strong if $m_X(w) > 0$.

Let

$$m_X(w) = \#E_X(w) - \#E_X^L(w) - \#E_X^R(w) + 1.$$

Definition

A word $w \in \mathcal{L}(X)$ is

- neutral if $m_X(w) = 0$;
- weak if $m_X(w) < 0$;
- strong if $m_X(w) > 0$.

Lemma

Let $w \in \mathcal{L}(X)$.

- If w is dendric, then w is neutral.
- If w is connected, then w is NOT weak.
- If w is connected and neutral, then w is dendric.

France Gheeraert

Algebraic characterization of dendricity

Link with return words

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. Then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$ if and only if every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof: build a tree rooted in w in which we see (complete) return words as leafs, then use the link between edges and vertices in a tree.

Link with return words

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. Then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$ if and only if every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof: build a tree rooted in w in which we see (complete) return words as leafs, then use the link between edges and vertices in a tree.

What we still need to prove:

- if X is dendric, then $\mathcal{R}_X(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$;
- if *R_X(w)* is a basis of *F_A* for every *w* ∈ *L(X)*, then every *w* ∈ *L(X)* is connected.

Tool 2 : RAUZY GRAPHS

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by a ∈ A if av ∈ uA ∩ L(X).

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 010020010020\cdots$

France Gheeraert

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 0 \underline{100} 20010020 \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 010020010020\cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by a ∈ A if av ∈ uA ∩ L(X).

 $\cdots 010020010020\cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by a ∈ A if av ∈ uA ∩ L(X).

 $\cdots 0100 \underline{200} 10020 \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 01002 \underbrace{001}_{0020} \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 010020 010020 \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 0100200 \underline{100} 20 \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 01002001 \\ 0020 \\ \cdots$

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

 $\cdots 010020010020\cdots$

Link with return words

Return words for w are particular paths from w to w in $\Gamma_X(|w|)$.

Definition

The *Rauzy group* $G_X(w)$ associated with $w \in \mathcal{L}(X)$ is the subgroup of F_A generated by the labels of the paths from w to w in $\Gamma_X(|w|)$.

Link with return words

Return words for w are particular paths from w to w in $\Gamma_X(|w|)$.

Definition

The Rauzy group $G_X(w)$ associated with $w \in \mathcal{L}(X)$ is the subgroup of F_A generated by the labels of the paths from w to w in $\Gamma_X(|w|)$.

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

Idea of the proof: a path from *uw* to *uw* is a concatenation of elements of $\mathcal{R}_{\mathcal{A}^{\mathbb{Z}}}(w)$, and if *u* is long enough, they are in $\mathcal{R}_{X}(w)$.

Proposition (Berthé *et al.*)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_A$ for every $w \in \mathcal{L}(X)$.

Idea of the proof: we can go from $\Gamma_X(n)$ to $\Gamma_X(n-1)$ using Stalling foldings, which preserve the Rauzy group.

France Gheeraert

Algebraic characterization of dendricity

Problem for the converse

In general,

$$\Gamma_X(n)$$
 and $\Gamma_X(n-1)$ "generate" the same group
 \Rightarrow every $w \in \mathcal{L}(X) \cap \mathcal{A}^{n-1}$ is connected

Problem for the converse

In general,

$$\Gamma_X(n)$$
 and $\Gamma_X(n-1)$ "generate" the same group
 \Rightarrow every $w \in \mathcal{L}(X) \cap \mathcal{A}^{n-1}$ is connected

BUT

Proposition (Goulet-Ouellet)

```
\Gamma_X(1) generates F_A \implies \varepsilon is connected
```

Idea of the proof: Only one type of Stallings folding is possible, and with the other one, we only merge connected right vertices.

Tool 3 : DERIVATION

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

$\cdots | 0011 | 002 | 0011 | 0022 | 0011 | 0 | 0011 \cdots$ $\cdots a b a c a d a \cdots$

$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

··· a b a c a d a ···

Definition

Let X be minimal, $w \in \mathcal{L}(X)$ and $\sigma \colon \mathcal{B} \to \mathcal{R}_X(w)$ a bijection. The *derived shift space* w.r.t w is

$$D_w(X) = \{y \in \mathcal{B}^{\mathbb{Z}} : \cdots \sigma(y_{-1}).\sigma(y_0)\sigma(y_1) \cdots \in X\}.$$

France Gheeraert

Link with the main result

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

Idea of the proof: $ab \in \mathcal{L}(D_w(X))$ if and only if $\sigma(a)w\tilde{\sigma}(b) \in \mathcal{L}(X)$.

Link with the main result

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

Idea of the proof: $ab \in \mathcal{L}(D_w(X))$ if and only if $\sigma(a)w\tilde{\sigma}(b) \in \mathcal{L}(X)$.

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then $\Gamma_{D_w(X)}(1)$ generates $F_{\mathcal{B}}$.

Idea of the proof: if $\sigma(a) = u$, then $\langle \mathcal{R}_{D_w(X)}(a) \rangle = \sigma^{-1} \langle \mathcal{R}_X(uw) \rangle = F_{\mathcal{B}}$.

Thank you for your attention!

France Gheeraert

Algebraic characterization of dendricity

Dyadisc 7 13 / 13