Algebraic characterization of dendricity

France Gheeraert

March 6, 2025

Main result

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone & G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space over \mathcal{A} . The following assertions are equivalent:

- 1. X is dendric;
- 2. for each $w \in \mathcal{L}(X)$, $\mathcal{R}_X(w)$ is a basis of F_A .

The protagonists: (unidimensional) minimal shift spaces

Let A be a finite set called *alphabet*.

Definition

A shift space X is a

- ullet closed subset of $\mathcal{A}^{\mathbb{Z}}$
- stable under the shift map $S:(x_i)_{i\in\mathbb{Z}}\mapsto (x_{i+1})_{i\in\mathbb{Z}}$.

The protagonists: (unidimensional) minimal shift spaces

Let A be a finite set called *alphabet*.

Definition

A shift space X is a

- ullet closed subset of $\mathcal{A}^{\mathbb{Z}}$
- stable under the shift map $S:(x_i)_{i\in\mathbb{Z}}\mapsto (x_{i+1})_{i\in\mathbb{Z}}$.

Definition

The *language* of a shift space X is

$$\mathcal{L}(X) = \{ w : \exists x \in X, \exists i \leq j \text{ st. } w = x_i \cdots x_i \}.$$

 $\cdots 10010011001001001101100\cdots$

 $\mathcal{E}_X(10)$

$$E_X^L(w) = \{ a \in \mathcal{A} : aw \in \mathcal{L}(X) \} \qquad E_X^R(w) = \{ b \in \mathcal{A} : wb \in \mathcal{L}(X) \}$$
$$E_X(w) = \{ (a, b) \in \mathcal{A} \times \mathcal{A} : awb \in \mathcal{L}(X) \}$$

Definition (Berthé et al.)

A word $w \in \mathcal{L}(X)$ is *dendric* (resp., *connected*) if its extension graph is a tree (resp., is connected).

Definition (Berthé et al.)

A word $w \in \mathcal{L}(X)$ is *dendric* (resp., *connected*) if its extension graph is a tree (resp., is connected).

A shift space X is *dendric* if every $w \in \mathcal{L}(X)$ is dendric.

 $\cdots 001100200110022001100011 \cdots$

The return words to 00 are:

 $\cdots \mid 001100200110022001100011 \cdots$

The return words to 00 are:

 $\cdots \mid 0011 \mid 00200110022001100011 \cdots$

The return words to 00 are: 0011

$$\cdots \mid 0011 \mid 002 \mid 00110022001100011 \cdots$$

The return words to 00 are: 0011, 002

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022001100011 \cdots$$

The return words to 00 are: 0011, 002

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 001100011 \cdots$$

The return words to 00 are: 0011, 002, 0022

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 00011 \cdots$$

The return words to 00 are: 0011, 002, 0022

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

The return words to 00 are: 0011, 002, 0022, 0

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

The return words to 00 are: 0011, 002, 0022, 0

Definition

A return word for w is a word u such that

$$uw \in \mathcal{L}(X) \cap w\mathcal{A}^+ \setminus \mathcal{A}^+ w\mathcal{A}^+.$$

The set of return words for w is denoted $\mathcal{R}_X(w)$.

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

The return words to 00 are: 0011, 002, 0022, 0

Definition

A return word for w is a word u such that

$$uw \in \mathcal{L}(X) \cap w\mathcal{A}^+ \setminus \mathcal{A}^+ w\mathcal{A}^+.$$

The set of return words for w is denoted $\mathcal{R}_X(w)$.

For the example above,

$$\langle 0011, 002, 0022, 0 \rangle = \langle 0011, 002, 2, 0 \rangle = \langle 0011, 2, 0 \rangle = \langle 11, 2, 0 \rangle$$

Main result (again)

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone & G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space over \mathcal{A} . The following assertions are equivalent:

- 1. X is dendric;
- 2. for each $w \in \mathcal{L}(X)$, $\mathcal{R}_X(w)$ is a basis of F_A ;
- 3. for each $w \in \mathcal{L}(X)$, $\#\mathcal{R}_X(w) = \#\mathcal{A}$ and $\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}}$.

Definition

Let

$$m_X(w) = \#E_X(w) - \#E_X^L(w) - \#E_X^R(w) + 1.$$

Definition

A word $w \in \mathcal{L}(X)$ is

- neutral if $m_X(w) = 0$;
- weak if $m_X(w) < 0$;
- strong if $m_X(w) > 0$.

Definition

Let

$$m_X(w) = \#E_X(w) - \#E_X^L(w) - \#E_X^R(w) + 1.$$

Definition

A word $w \in \mathcal{L}(X)$ is

- neutral if $m_X(w) = 0$;
- weak if $m_X(w) < 0$;
- strong if $m_X(w) > 0$.

Lemma

Let $w \in \mathcal{L}(X)$.

- 1. If w is dendric, then w is neutral.
- 2. If w is connected, then w is NOT weak.
- 3. If w is connected and neutral, then w is dendric.

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. The following are equivalent:

- 1. $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$;
- 2. every $w \in \mathcal{L}(X)$ is neutral.

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. The following are equivalent:

- 1. $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$;
- 2. every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof:

• build a tree where leafs are (complete) return words,

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. The following are equivalent:

- 1. $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$;
- 2. every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof:

- build a tree where leafs are (complete) return words,
- use the link between edges and vertices to obtain

$$\#\mathcal{R}_X(w) = 1 + \sum_{U \in \text{non leaf vertices}} (\#\mathcal{E}_X^R(u) - 1),$$

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. The following are equivalent:

- 1. $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$;
- 2. every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof:

- build a tree where leafs are (complete) return words,
- use the link between edges and vertices to obtain

$$\#\mathcal{R}_X(w) = 1 + \sum_{u \in \text{non leaf vertices}} (\#\mathcal{E}_X^R(u) - 1),$$

• use properties of the set of non leaf vertices to show that

$$\#\mathcal{R}_X(w) = \#\mathcal{A} + \sum_{u \in T_w} m_X(u)$$
 for some T_w ,

Theorem (Balková, Pelantová, Steiner)

Let X be a minimal shift space with no weak $w \in \mathcal{L}(X)$. The following are equivalent:

- 1. $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for every $w \in \mathcal{L}(X)$;
- 2. every $w \in \mathcal{L}(X)$ is neutral.

Idea of the proof:

- build a tree where leafs are (complete) return words,
- use the link between edges and vertices to obtain

$$\#\mathcal{R}_X(w) = 1 + \sum_{u \in \text{non leaf vertices}} (\#E_X^R(u) - 1),$$

• use properties of the set of non leaf vertices to show that

$$\#\mathcal{R}_X(w) = \#\mathcal{A} + \sum_{u \in \mathcal{T}_w} m_X(u) \text{ for some } \mathcal{T}_w,$$

conclude as there are no weak words.

Link with the main result

This result shows:

• If X is dendric, then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$.

Link with the main result

This result shows:

- If X is dendric, then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$.
- If $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$ and every $w \in \mathcal{L}(X)$ is connected, then X is dendric.

This result shows:

- If X is dendric, then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$.
- If $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$ and every $w \in \mathcal{L}(X)$ is connected, then X is dendric.

We still need to prove:

• If X is dendric, then $\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}}$ for each $w \in \mathcal{L}(X)$.

This result shows:

- If X is dendric, then $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$.
- If $\#\mathcal{R}_X(w) = \#\mathcal{A}$ for each $w \in \mathcal{L}(X)$ and every $w \in \mathcal{L}(X)$ is connected, then X is dendric.

We still need to prove:

- If X is dendric, then $\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}}$ for each $w \in \mathcal{L}(X)$.
- If $\mathcal{R}_X(w)$ is a basis of $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$, then every $w \in \mathcal{L}(X)$ is connected.

Tool 2: RAUZY GRAPHS

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

...010020010020...

Definition

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

Definition

Let X be a shift space. The Rauzy graph of order n is the graph $\Gamma_X(n)$ such that

- the vertices are the elements of $\mathcal{L}(X) \cap \mathcal{A}^n$;
- there is an edge from u to v labeled by $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(X)$.

...010020010020...

Link with return words

Return words for w are particular paths from w to w in $\Gamma_X(|w|)$.

Link with return words

Return words for w are particular paths from w to w in $\Gamma_X(|w|)$.

Definition

The Rauzy group $G_X(w)$ associated with $w \in \mathcal{L}(X)$ is the subgroup of $F_{\mathcal{A}}$ generated by the labels of the paths from w to w in $\Gamma_X(|w|)$.

Link with return words

Return words for w are particular paths from w to w in $\Gamma_X(|w|)$.

Definition

The Rauzy group $G_X(w)$ associated with $w \in \mathcal{L}(X)$ is the subgroup of $F_{\mathcal{A}}$ generated by the labels of the paths from w to w in $\Gamma_X(|w|)$.

Clearly,

$$\langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

Workshop March 6

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

Idea of the proof:

• take u such that $|u| = \max(|\mathcal{R}_X(w)|)$,

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

- take u such that $|u| = \max(|\mathcal{R}_X(w)|)$,
- as uw starts with w, a path from uw to uw is a concatenation of words $v_i \in \mathcal{R}_{\mathcal{A}^{\mathbb{Z}}}(w)$,

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

- take u such that $|u| = \max(|\mathcal{R}_X(w)|)$,
- as uw starts with w, a path from uw to uw is a concatenation of words $v_i \in \mathcal{R}_{A^{\mathbb{Z}}}(w)$,
- $v_i w$ labels a path in $\Gamma_X(|uw|)$ so its length- $(\min(|uw|, |v_i w|))$ prefix is a factor of a vertex and is in $\mathcal{L}(X)$,

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

- take u such that $|u| = \max(|\mathcal{R}_X(w)|)$,
- as uw starts with w, a path from uw to uw is a concatenation of words $v_i \in \mathcal{R}_{A^{\mathbb{Z}}}(w)$,
- $v_i w$ labels a path in $\Gamma_X(|uw|)$ so its length- $(\min(|uw|, |v_i w|))$ prefix is a factor of a vertex and is in $\mathcal{L}(X)$,
- if $|v_i w| \leq |uw|$, then $v_i w$ is in $\mathcal{L}(X)$ so $v_i \in \mathcal{R}_X(w)$,

Proposition (Berthé et al.)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. There exists $u \in \mathcal{R}_X(w)$ such that

$$G_X(uw) \leq \langle \mathcal{R}_X(w) \rangle \leq G_X(w).$$

- take u such that $|u| = \max(|\mathcal{R}_X(w)|)$,
- as uw starts with w, a path from uw to uw is a concatenation of words $v_i \in \mathcal{R}_{A\mathbb{Z}}(w)$,
- $v_i w$ labels a path in $\Gamma_X(|uw|)$ so its length- $(\min(|uw|, |v_i w|))$ prefix is a factor of a vertex and is in $\mathcal{L}(X)$,
- if $|v_i w| \leq |uw|$, then $v_i w$ is in $\mathcal{L}(X)$ so $v_i \in \mathcal{R}_X(w)$,
- otherwise, by definition of u, w is an internal factor of $v_i w$, a contradiction.

Workshop March 6

Proposition (Berthé et al.)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$.

Proposition (Berthé et al.)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$.

Idea of the proof:

• as the extension graphs are connected, we can go from $\Gamma_X(n)$ to $\Gamma_X(n-1)$ using Stalling foldings,

Proposition (Berthé et al.)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$.

- as the extension graphs are connected, we can go from $\Gamma_X(n)$ to $\Gamma_X(n-1)$ using Stalling foldings,
- Stalling foldings preserve the groups generated by paths based on one vertex,

Proposition (Berthé et al.)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$.

- as the extension graphs are connected, we can go from $\Gamma_X(n)$ to $\Gamma_X(n-1)$ using Stalling foldings,
- Stalling foldings preserve the groups generated by paths based on one vertex,
- thus $G_X(w) = G_X(\varepsilon) = F_A$.

Proposition (Berthé et al.)

Let X be a minimal shift space. If every $w \in \mathcal{L}(X)$ is connected, then $G_X(w) = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$.

Idea of the proof:

- as the extension graphs are connected, we can go from $\Gamma_X(n)$ to $\Gamma_X(n-1)$ using Stalling foldings,
- Stalling foldings preserve the groups generated by paths based on one vertex,
- thus $G_X(w) = G_X(\varepsilon) = F_A$.

This ends the proof that, if X is dendric, then, for each $w \in \mathcal{L}(X)$, $\mathcal{R}_X(w)$ is a basis of F_A .

Problem for the converse

In general,

$$\Gamma_X(n)$$
 and $\Gamma_X(n-1)$ "generate" the same group \implies every $w \in \mathcal{L}(X) \cap \mathcal{A}^{n-1}$ is connected

Problem for the converse

In general,

$$\Gamma_X(n)$$
 and $\Gamma_X(n-1)$ "generate" the same group \implies every $w \in \mathcal{L}(X) \cap \mathcal{A}^{n-1}$ is connected

and

$$\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}} \text{ for each } w \in \mathcal{L}(X) \cap \mathcal{A}^{\leq n}$$
 \implies every $w \in \mathcal{L}(X) \cap \mathcal{A}^{\leq n-1} \text{ is connected}$

Small hope

The implication is true for n = 1:

Proposition (Goulet-Ouellet)

Let X be a minimal shift space. If there exists $a \in \mathcal{A}$ such that $\langle \mathcal{R}_X(a) \rangle = F_{\mathcal{A}}$, then ε is connected.

Small hope

The implication is true for n = 1:

Proposition (Goulet-Ouellet)

Let X be a minimal shift space. If there exists $a \in \mathcal{A}$ such that $\langle \mathcal{R}_X(a) \rangle = F_{\mathcal{A}}$, then ε is connected.

Idea of the proof:

• since $G_X(a) = F_A$, we can use Stallings foldings to identify all the vertices of $\Gamma_X(1)$,

Small hope

The implication is true for n = 1:

Proposition (Goulet-Ouellet)

Let X be a minimal shift space. If there exists $a \in A$ such that $\langle \mathcal{R}_X(a) \rangle = F_A$, then ε is connected.

- since $G_X(a) = F_A$, we can use Stallings foldings to identify all the vertices of $\Gamma_X(1)$,
- in $\Gamma_X(1)$, edges labeled by the same letter leave the same vertex so only one type of Stallings foldings is possible,

Small hope

The implication is true for n = 1:

Proposition (Goulet-Ouellet)

Let X be a minimal shift space. If there exists $a \in \mathcal{A}$ such that $\langle \mathcal{R}_X(a) \rangle = F_{\mathcal{A}}$, then ε is connected.

- since $G_X(a) = F_A$, we can use Stallings foldings to identify all the vertices of $\Gamma_X(1)$,
- in $\Gamma_X(1)$, edges labeled by the same letter leave the same vertex so only one type of Stallings foldings is possible,
- we only identify letters whose right instances are connected by a path in the extension graph of ε .

Tool 3 : DERIVATION

Definition

 $\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$

Definition

Definition

$$\cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

··· a b a c a d a ···

Definition

Let X be minimal, $w \in \mathcal{L}(X)$ and $\sigma \colon \mathcal{B} \to \mathcal{R}_X(w)$ a bijection. The *derived shift space w.r.t w* is

$$D_w(X) = \{ y \in \mathcal{B}^{\mathbb{Z}} : \cdots \sigma(y_{-1}).\sigma(y_0)\sigma(y_1)\cdots \in X \}.$$

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

Idea of the proof:

• if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set $\tilde{\sigma}: \mathcal{B} \to \mathcal{A}^*$ such that $\sigma(b)w = w\tilde{\sigma}(b)$,

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

- if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set $\tilde{\sigma}: \mathcal{B} \to \mathcal{A}^*$ such that $\sigma(b)w = w\tilde{\sigma}(b)$,
- $ab \in \mathcal{L}(D_w(X))$ if and only if $\sigma(a)w\tilde{\sigma}(b) \in \mathcal{L}(X)$,

Lemma

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If ε is connected in $D_w(X)$, then w is connected in X.

- if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set $\tilde{\sigma}: \mathcal{B} \to \mathcal{A}^*$ such that $\sigma(b)w = w\tilde{\sigma}(b)$,
- $ab \in \mathcal{L}(D_w(X))$ if and only if $\sigma(a)w\tilde{\sigma}(b) \in \mathcal{L}(X)$,
- the extension graph of w in X is the image of the extension graph of ε in $D_w(X)$ under the graph morphism mapping left vertices a to the last letter of $\sigma(a)$ and right vertices b to the first letter of $\tilde{\sigma}(b)$.

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$.

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$.

Idea of the proof:

• if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set a such that $\sigma(a) = u$,

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$.

- if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set a such that $\sigma(a) = u$,
- $\langle \sigma(\mathcal{R}_{D_w(X)}(a)) \rangle = \langle \mathcal{R}_X(uw) \rangle = \langle \mathcal{R}_X(w) \rangle$,

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$.

- if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set a such that $\sigma(a) = u$,
- $\langle \sigma(\mathcal{R}_{D_w(X)}(a)) \rangle = \langle \mathcal{R}_X(uw) \rangle = \langle \mathcal{R}_X(w) \rangle$,
- σ defines an isomorphism between $F_{\mathcal{B}}$ and $\langle \mathcal{R}_X(w) \rangle$,

Proposition (G., Goulet-Ouellet, Leroy, Stas)

Let X be a minimal shift space and let $w \in \mathcal{L}(X)$. If

- $\mathcal{R}_X(w)$ is a basis of $\langle \mathcal{R}_X(w) \rangle$,
- there exists $u \in \mathcal{R}_X(w)$ such that $\langle \mathcal{R}_X(w) \rangle = \langle \mathcal{R}_X(uw) \rangle$, then there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$.

- if $\sigma: \mathcal{B} \to \mathcal{R}_X(w)$ defines $D_w(X)$, set a such that $\sigma(a) = u$,
- $\langle \sigma(\mathcal{R}_{D_w(X)}(a)) \rangle = \langle \mathcal{R}_X(uw) \rangle = \langle \mathcal{R}_X(w) \rangle$,
- σ defines an isomorphism between $F_{\mathcal{B}}$ and $\langle \mathcal{R}_X(w) \rangle$,
- $\langle \mathcal{R}_{D_w(X)}(a) \rangle = \sigma^{-1} \langle \mathcal{R}_X(w) \rangle = F_{\mathcal{B}}.$

So, if $\mathcal{R}_X(w)$ is a basis of $F_{\mathcal{A}}$ for each $w \in \mathcal{L}(X)$, then

• for each w, there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$,

- for each w, there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$,
- for every w, ε is connected in $D_w(X)$,

- ullet for each w, there exists $a\in\mathcal{B}$ such that $\langle\mathcal{R}_{D_w(X)}(a)
 angle=F_{\mathcal{B}}$,
- for every w, ε is connected in $D_w(X)$,
- every w is connected in X,

- for each w, there exists $a \in \mathcal{B}$ such that $\langle \mathcal{R}_{D_w(X)}(a) \rangle = F_{\mathcal{B}}$,
- for every w, ε is connected in $D_w(X)$,
- every w is connected in X,
- as the number of return words is constant equal to #A, X is dendric.

What's next?

- What about eventual dendricity?
- Can we characterize combinatorially the fact that $\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$?
- What is the link with homotopy between the Rauzy graphs?

What's next?

- What about eventual dendricity?
- Can we characterize combinatorially the fact that $\langle \mathcal{R}_X(w) \rangle = F_{\mathcal{A}}$ for every $w \in \mathcal{L}(X)$?
- What is the link with homotopy between the Rauzy graphs?

Thank you for your attention!