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1. Introduction



Some basic definitions

• A letter is an element from a finite set (called alphabet).

• A word is a sequence of letters, it can be finite or infinite.
• A finite word is a factor of a longer word if it appears

consecutively in it.
• The factor complexity of an infinite word is the function

p : N → N counting, for each n, the number of different
factors of length n.

Example:
21021022102102102202210210 · · ·
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Sturmian words

They have many definitions:
• aperiodic words of complexity n + 1 (the lowest possible)

• aperiodic binary balanced words
• codings of irrational rotation on the circle
• mechanical words
• ...

and many generalizations:
• Arnoux-Rauzy or episturmian words
• billiard words
• codings of interval exchanges on the circle
• dendric words
• ...
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Extension graphs

x = 0010011001001001101100 · · ·

Ex (10)

0 0

1 1

left
extensions

right
extensions

A word is bispecial if it has at least 2 left extensions and 2 right
extensions.
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Dendricity
Definition (Berthé et al.)
A factor w of x is dendric if its extension graph is a tree.

An infinite word is dendric if all of its factors are dendric.

Sturm.
str.

episturm.

reg. interv.
exchange
coding

dendric

p(n) = (d − 1)n + 1
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Eventual dendricity

Definition (Dolce, Perrin)
An infinite word is eventually dendric if all but finitely many of its
factors are dendric.

The threshold is the smallest N such that all
factors of length at least N are dendric.

• includes dendric words, but also periodic or 1-balanced words
• eventually affine factor complexity
• dynamical property (invariant under topological isomorphism)
• admits several definitions
• stable under application of any morphism (Espinoza)
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Two natural questions

1. How can we determine if a given word is (eventually) dendric?

2. How can we generate “arbitrary” examples?

We consider morphic words: x = τ(σω(a)) where τ is non-erasing
and σ is primitive and prolongeable on a.
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Let’s focus on two examples

Take the words

x = σω(0) = 01201012012010120101201201 · · ·
y = τ (σω(0)) = 11011110110111101111011 · · ·

where

τ :


0 7→ 1
1 7→ 1
2 7→ 0

and σ :


0 7→ 01
1 7→ 2
2 7→ 01

.

• the empty word is not dendric in x,
• 11 is not dendric in y... but are x and y eventually dendric?
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2. Durand’s construction



Derivation

0120101201201012010120120 · · ·

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 0 1 0 1 0 0 · · ·

Definition
The derived sequence of x with respect to its first letter a is the
unique sequence D(x) such that there exists an injective morphism
θ satisfying:

• for any letter b, θ(b) ∈ a(A \ a)∗,
• x = θ(D(x)).

Here, θ(0) = 012, θ(1) = 01.
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Construction of S-adic representation

Iterating the derivation, we obtain

x = θ1(D(x))

= θ1(θ2(D(2)(x)))
= θ1 . . . θn(D(n)(x))

So, if we choose the θi such that D(n) starts with a 0,

x = lim
n→∞

θ1 . . . θn(0)

This means that the sequence (θi) entirely determines x , it is an
S-adic representation.
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The case of morphic words

Proposition (Durand)
For any morphic word x,

1. D(x) is morphic,
2. θ and generating morphisms for D(x) can be algorithmically

computed.
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Technique for purely morphic words

To find D(x) when x = σω(a):

1. Find the first return word r0 for a by looking at iterates of σ
on a.

2. Compute σ(r0) and decompose it into return words r0, r1, . . .
for a.

3. If new return words were found, go back to step 2. for each
one.

4. Set θ : i 7→ ri and φ : i 7→ j1 · · · jn if

σ(ri) = rj1 · · · rjn .

Then D(x) = φω(0) and x = θ(D(x)).

Important: θ depends on x , φ depends on σ.
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Technique with a coding τ

To find D(x) when x = τ(σω(a)), we do the same BUT:
• we don’t look at return words for τ(a) in x but at return

words for τ−1(τ(a)) in σω(a);

• we replace return words ri by complete return words
Ri = (ri , bi) where b ∈ τ−1(τ(a)) is the letter following ri ;

• we may need to consider a power of σ;
• we have a coding for D(x) that identifies indices i , j if

τ(ri) = τ(rj).
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Process iteration

From x = τ(σω(a)), we can construct
• (ρi , φi) such that D(i)(x) = ρi(φω

i (0)),

• θi such that D(i−1)(x) = θi(D(i)(x)).

Proposition (Durand)
If x is morphic, then

1. there exist i < j such that D(i)(x) = D(j)(x)
→ the sequence (θi) is eventually periodic;

2. there exist i < j such that (ρi , φi) = (ρj , φj)
→ we can compute the pre-period and period of (θi).

So we can the compute the sequence (θi).
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For the examples

x = σω(0):
• θ1 : 0 7→ 012, 1 7→ 01, φ1 : 0 7→ 01, 1 7→ 0

• θ2 : 0 7→ 01, 1 7→ 0, φ2 : 0 7→ 01, 1 7→ 0
→ (θi) = θ1θ2θ2θ2 . . .

y = τ (σω(0)):
• θ1 : 0 7→ 1, 1 7→ 10, ρ1 : 0, 2 7→ 0, 1 7→ 1,

φ1 : 0 7→ 01, 1 7→ 0201, 2 7→ 02
• θ2 : 0 7→ 01, 1 7→ 0, ρ2 : 0 7→ 0, 1, 2 7→ 1,

φ2 : 0 7→ 0120, 1 7→ 0, 2 7→ 12
• θ3 : 0 7→ 011, 1 7→ 0, φ3 : 0 7→ 010, 1 7→ 01
• θ4 : 0 7→ 01, 1 7→ 0, φ4 : 0 7→ 010, 1 7→ 01

→ (θi) = θ1θ2θ3θ4θ4θ4 . . .
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Decidability of the equality

Corollary
If we can apply Durand’s construction on x = τ1(σω

1 (a)) and
y = τ2(σω

2 (b)), then we can decide whether x = y.

Proof:
It suffices to check whether the associated sequences (θi) are equal
since they only depend on the initial word and not on its morphic
representation.
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Alternative morphic representation

x = θ0 · · · θi−1 (θi · · · θj−1)ω (0)
= α(βω(0))

α :
{

0 7→ 11011110
1 7→ 110110

β :
{

0 7→ 010
1 7→ 00

where α and β are return morphisms.

Definition
A morphism α is a return morphism if there exists a word w such
that

• α is injective over the letters
• for any letter a , α(a)w starts with w and contains no internal

occurrence of w .
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Description of extensions

a

1110110111101111011

b

u in α(βω(0))

?

α

v in βω(0)

110 | 11011 | 11011a1 | | 11011b

suffix of α(c) prefix of α(d)110

• v is the parent of u, and u is an extended image of v
• the extensions of a parent entirely determine the extensions of

its extended images
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3. Back to dendricity



Eventual dendricity

Let x = θ(y) with θ a return morphism (for the word w).

Proposition (Berthé et al., G., Leroy)
If x is eventually dendric of threshold N, then y is eventually
dendric of threshold ≤ max{0, N − |w |}.

Proposition (G., Leroy)

x eventually dendric ⇐⇒ y eventually dendric

y = α(βω(0))) eventually dendric
⇐⇒ βω(0) eventually dendric

⇐⇒ βω(0) dendric ✓
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Proposition (Berthé et al., G., Leroy)
If x is eventually dendric of threshold N, then y is eventually
dendric of threshold ≤ max{0, N − |w |}.

Proposition (G., Leroy)

x eventually dendric ⇐⇒ y eventually dendric

y = α(βω(0))) eventually dendric
⇐⇒ βω(0) eventually dendric

⇐⇒ βω(0) dendric ✓

France Gheeraert Decidability of dendricity SDA2 2025 18 / 1



A new example

We now consider z = λ(µω(0)) where

λ :


0 7→ 02
1 7→ 0
2 7→ 012

and µ :


0 7→ 01002
1 7→ 0100201
2 7→ 01002010201

We need to determine
• whether µω(0) is dendric

→ z is eventually dendric,
• and if yes, whether its image under λ is dendric

→ z is dendric.
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Factor generation

We can partition the factors of µω(0) as follows:
• gen. 0: factors that do not have a parent
• gen. 1: factors whose parents are of gen. 0
• gen. n: factors whose parents are of gen. n − 1

µ :


0 7→ 010020100
1 7→ 01002010100
2 7→ 010020102010100

ε

0

1

2

0

1

2

0
0

1

2

0

1

2

010

1

2

0

1

2

02010
0

1

0

1

2
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Dendric extended images

If the parent is dendric, when are the extended images dendric?

µ :


0 7→ 010020100
1 7→ 01002010100
2 7→ 010020102010100

v
0

1

2

0

1

2

µ(v)01002010

1

2

0

1

2

Proposition
If v is dendric, then its extended images are dendric if and only if,
for any word s

• the left letters whose images end in s form a “connected
subgraph” in E(v);

• the right letters whose images (followed by 0100) start with s
form a “connected subgraph” in E(v).
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Some graphs

Definition
For n ∈ N, we define the graph GL

n where
• the vertices are the letters;
• we have the edge (a, b) if, for all v of gen ≤ n, if a and b are

left letters in E(v), they are connected by a length-2 path.

Proposition
If the words of gen ≤ n are dendric, then

1. the words of gen n + 1 are dendric iff, for any word s,
letters whose images end in s form a connected subgraph of GL

n
letters whose images (followed by 0100) start with s form a
connected subgraph of GR

n ;
2. we can then construct GL

n+1 and GR
n+1 based on GL

n and GR
n .
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Back to the example

µ :


0 7→ 010020100
1 7→ 01002010100
2 7→ 010020102010100

ε

0

1

2

0

1

2

0
0

1

2

0

1

2

010

1

2

0

1

2

02010
0

1

0

1

2

GL
0

0

1

2

GR
0

0

1

2

GL
n : {0, 1, 2} and {1, 2}

are connected
subgraphs?

GR
n : {0, 1, 2} is a

connected subgraph?

✓

GL
1

0

1

2

GR
1

0

1

2

⇒ µω(0) is dendric
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Back to the example (2)

So z = λ(µω(0)) is eventually dendric. Is it dendric?

factors without parent: λ :


0 7→ 020
1 7→ 00
2 7→ 0120

ε

0

1

2

0

1

2

factors with parent:

GL

0

1

2

GR

0

1

2

GL: {0, 1, 2} and {0, 2}
are connected
subgraphs?

GR : {0, 1, 2} is a
connected subgraph?

⇒ z is not dendric
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Generating examples

Dendric: • apply an appropriate return morphism on a
dendric example for which you know the graphs
GL and GR

• use the S-adic characterization (based on similar
construction)

Ev. dendric: apply a return morphism to any eventually dendric
example

Non-ev dend: apply a return morphism to any non-eventually
dendric example
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Conclusion

• Get an algorithmic procedure of the preliminary work for
Durand’s construction

• Use a similar construction to decide other properties related to
bispecial words

Thank you for your attention!
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