The link between return words and extensions of factors

France Gheeraert

July 4, 2025

We consider

• a two-sided infinite sequence x

We consider

- a two-sided infinite sequence x
- over the alphabet A (minimal)

We consider

- a two-sided infinite sequence x
- over the alphabet A (minimal)
- where its language is denoted $\mathcal{L}(x)$

We consider

- a two-sided infinite sequence x
- over the alphabet A (minimal)
- where its language is denoted $\mathcal{L}(x)$
- and $\mathcal{L}_n(x)$ is the set of length-n words in x.

1. The protagonists

Extensions

For any $w \in \mathcal{L}(x)$,

• its left extensions are the letters in

$$\mathrm{E}_{x}^{L}(w)=\{a\in\mathcal{A}:aw\in\mathcal{L}(x)\},$$

Extensions

For any $w \in \mathcal{L}(x)$,

• its left extensions are the letters in

$$\mathrm{E}_{\mathrm{x}}^{L}(w) = \{ a \in \mathcal{A} : aw \in \mathcal{L}(x) \},$$

• its right extensions are the letters in

$$\mathrm{E}_{\mathrm{x}}^{R}(w) = \{b \in \mathcal{A} : wb \in \mathcal{L}(x)\},\$$

Extensions

For any $w \in \mathcal{L}(x)$,

• its left extensions are the letters in

$$\mathrm{E}_{\mathsf{x}}^{L}(w) = \{ \mathsf{a} \in \mathcal{A} : \mathsf{a} w \in \mathcal{L}(\mathsf{x}) \},$$

• its right extensions are the letters in

$$\mathrm{E}_{\mathsf{x}}^{R}(\mathsf{w}) = \{ b \in \mathcal{A} : \mathsf{w}b \in \mathcal{L}(\mathsf{x}) \},$$

• its bi-extensions are the pairs of letters in

$$\mathrm{E}_{\mathsf{x}}(\mathsf{w}) = \{(\mathsf{a}, \mathsf{b}) \in \mathcal{A}^2 : \mathsf{a}\mathsf{w}\mathsf{b} \in \mathcal{L}(\mathsf{x})\}.$$

Extensions and factor complexity

Definition

• s_x : $n \mapsto p_x(n+1) - p_x(n)$ is the first difference of complexity;

Extensions and factor complexity

Definition

- s_x : $n \mapsto p_x(n+1) p_x(n)$ is the first difference of complexity;
- $m_x(w) = \# \mathcal{E}_x(w) \# \mathcal{E}_x^L(w) \# \mathcal{E}_x^R(w) + 1$ is the multiplicity of $w \in \mathcal{L}(x)$.

Extensions and factor complexity

Definition

- s_x : $n \mapsto p_x(n+1) p_x(n)$ is the first difference of complexity;
- $m_x(w) = \#\mathbb{E}_x(w) \#\mathbb{E}_x^L(w) \#\mathbb{E}_x^R(w) + 1$ is the multiplicity of $w \in \mathcal{L}(x)$.

Proposition (Cassaigne)

For all n.

$$s_x(n+1) - s_x(n) = \sum_{w \in \mathcal{L}_n(x)} m_x(w).$$

$$x = \cdots 001100200110022001100011 \cdots$$

$$\mathcal{R}_{x}(00) =$$

$$x = \cdots \mid 001100200110022001100011 \cdots$$

$$\mathcal{R}_{x}(00) =$$

$$x = \cdots \mid 0011 \mid 00200110022001100011 \cdots$$

 $\mathcal{R}_x(00) = \{0011$

$$x = \cdots \mid 0011 \mid 002 \mid 00110022001100011 \cdots$$

 $\mathcal{R}_x(00) = \{0011, 002\}$

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022001100011 \cdots$$

 $\mathcal{R}_x(00) = \{0011, 002$

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 001100011 \cdots$$

 $\mathcal{R}_{x}(00) = \{0011, 002, 0022\}$

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 00011 \cdots$$

 $\mathcal{R}_{x}(00) = \{0011, 002, 0022\}$

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

 $\mathcal{R}_{x}(00) = \{0011, 002, 0022, 0\}$

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

$$\mathcal{R}_{x}(00) = \{0011, 002, 0022, 0\}$$

Definition

A return word for w is a word u such that

$$uw \in \mathcal{L}(x) \cap w\mathcal{A}^+ \setminus \mathcal{A}^+ w\mathcal{A}^+.$$

The set of return words for w is denoted $\mathcal{R}_{\times}(w)$.

$$x = \cdots \mid 0011 \mid 002 \mid 0011 \mid 0022 \mid 0011 \mid 0 \mid 0011 \cdots$$

$$\mathcal{R}_{x}(00) = \{0011, 002, 0022, 0\}$$

Definition

A return word for w is a word u such that

$$uw \in \mathcal{L}(x) \cap w\mathcal{A}^+ \setminus \mathcal{A}^+ w\mathcal{A}^+.$$

The set of return words for w is denoted $\mathcal{R}_{x}(w)$.

Remark:
$$\mathcal{R}_{\mathsf{x}}(\varepsilon) = \mathcal{A}$$

Decomposition and derivation

$$x = \cdots 0011 \ 002 \ 0011 \ 0022 \ 0011 \ 0 \ 0011 \cdots$$

Decomposition and derivation

Decomposition and derivation

$$x = \cdots 0011 \ 002 \ 0011 \ 0022 \ 0011 \ 0 \ 0011 \cdots$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$D_{00}(x) = \cdots 0 \qquad 1 \qquad 0 \qquad 2 \qquad 0 \qquad 3 \qquad \cdots$$

Definition

The derived sequence of x with respect to w is the sequence $D_w(x) \in \mathcal{B}^{\mathbb{Z}}$ such that $x = \theta(D_w(x))$ for a morphism θ defining a bijection between \mathcal{B} and $\mathcal{R}_x(w)$.

Extensions

Return words

letters or pairs of letters

• (long) words

Extensions

- letters or pairs of letters
- very local

- (long) words
- mildly local

Extensions

- letters or pairs of letters
- very local
- gives the complexity of x

- (long) words
- mildly local
- gives a decomposition of x

Extensions

- letters or pairs of letters
- very local
- gives the complexity of x
- used to define or characterize famous families of sequences

- (long) words
- mildly local
- \bullet gives a decomposition of x
- used for S-adic representations and critical exponents

Number of extensions and return words Structure of extensions and return words

First observation

Knowing the return words for w,

we know the left and right extensions of w,

Knowing the return words for w,

we know the left and right extensions of w,

```
example: if the return words for 011 are 01101,0110,011101, then \mathrm{E}_{\mathrm{x}}^L(w)=\{0,1\} and \mathrm{E}_{\mathrm{x}}^R(w)=\{0,1\}
```

Knowing the return words for w,

• we know the left and right extensions of w,

```
example: if the return words for 011 are 01101, 0110, 011101, then \mathrm{E}_{\mathbf{x}}^L(w) = \{\mathbf{0},\mathbf{1}\} and \mathrm{E}_{\mathbf{x}}^R(w) = \{\mathbf{0},\mathbf{1}\}
```

Knowing the return words for w,

we know the left and right extensions of w,

```
example: if the return words for 011 are 01101, 0110, 011101, then \mathrm{E}_{\mathbf{x}}^L(w)=\{0,1\} and \mathrm{E}_{\mathbf{x}}^R(w)=\{0,1\}
```

Knowing the return words for w,

• we know the left and right extensions of w, example: if the return words for 011 are 01101, 0110, 011101, then $\mathrm{E}_x^L(w)=\{0,1\}$ and $\mathrm{E}_x^R(w)=\{0,1\}$ and in particular,

$$\#\mathcal{R}_x(w) \ge \max\{\#\mathcal{E}_x^L(w), \#\mathcal{E}_x^R(w)\};$$

Number of extensions and return words Structure of extensions and return words

First observation

Knowing the return words for w,

• we know the left and right extensions of w, example: if the return words for 011 are 01101, 0110, 011101, then $\mathrm{E}_x^L(w)=\{0,1\}$ and $\mathrm{E}_x^R(w)=\{0,1\}$ and in particular,

$$\#\mathcal{R}_{\mathsf{x}}(w) \geq \max\{\#\mathrm{E}_{\mathsf{x}}^{L}(w), \#\mathrm{E}_{\mathsf{x}}^{R}(w)\};$$

• we can't know the bi-extensions of w.

Knowing the return words for w,

• we know the left and right extensions of w, example: if the return words for 011 are 01101, 0110, 011101, then $\mathrm{E}_x^L(w)=\{0,1\}$ and $\mathrm{E}_x^R(w)=\{0,1\}$ and in particular,

$$\#\mathcal{R}_{\mathsf{x}}(w) \geq \max\{\#\mathrm{E}_{\mathsf{x}}^{L}(w), \#\mathrm{E}_{\mathsf{x}}^{R}(w)\};$$

• we can't know the bi-extensions of w.

Knowing the extensions of w,

• we can't know the return words for w.

2. Number of extensions and return

words

Theorem (Vuillon)

x is Sturmian if and only if $\#\mathcal{R}_x(w) = 2$ for all $w \in \mathcal{L}(x)$.

Theorem (Vuillon)

x is Sturmian if and only if $\#\mathcal{R}_x(w) = 2$ for all $w \in \mathcal{L}(x)$.

Tools for the proof:

• Rauzy graphs of Sturmian sequences

Theorem (Vuillon)

x is Sturmian if and only if $\#\mathcal{R}_x(w) = 2$ for all $w \in \mathcal{L}(x)$.

Tools for the proof:

- Rauzy graphs of Sturmian sequences
- $\#\mathcal{R}_{x}(w) = 2$ for all $w \in \mathcal{L}(x) \implies \#\mathcal{R}_{D_{a}(x)}(u) = 2$ for all $u \in \mathcal{L}(D_{w}(x))$

Theorem (Vuillon)

x is Sturmian if and only if $\#\mathcal{R}_x(w) = 2$ for all $w \in \mathcal{L}(x)$.

Tools for the proof:

- Rauzy graphs of Sturmian sequences
- $\#\mathcal{R}_{x}(w) = 2$ for all $w \in \mathcal{L}(x) \implies \#\mathcal{R}_{D_{a}(x)}(u) = 2$ for all $u \in \mathcal{L}(D_{w}(x))$
- S-adic characterization of Sturmian sequences

For the Thue-Morse sequence,

01

For the Thue-Morse sequence,

return words

For the Thue-Morse sequence,

return words = # branches

$$\#$$
 return words $= \#$ branches
$$= 1 + \sum_{u \in S} \left(\# \mathrm{E}^R_{\mathsf{x}}(u) - 1 \right)$$

General case

Proposition (Balková, Pelantová, Steiner)

If x is uniformly recurrent, then for every $w \in \mathcal{L}(x)$,

$$\#\mathcal{R}_{\mathsf{x}}(w) = 1 + \sum_{u \in S_w} \left(\# \mathbf{E}_{\mathsf{x}}^R(u) - 1 \right)$$

where
$$S_w = \{u \in \mathcal{L}(x) \cap w\mathcal{A}^* : |u|_w = 1\}$$

General case

Proposition (Balková, Pelantová, Steiner)

If x is uniformly recurrent, then for every $w \in \mathcal{L}(x)$,

$$\#\mathcal{R}_{\mathsf{x}}(w) = 1 + \sum_{u \in \mathcal{S}_{\mathsf{w}}} \left(\# \mathcal{E}_{\mathsf{x}}^{R}(u) - 1 \right)$$

where $S_w = \{u \in \mathcal{L}(x) \cap w\mathcal{A}^* : |u|_w = 1\}$ is an x-maximal suffix code.

Definition

A set $S \subseteq \mathcal{L}(x)$ is an *x-maximal suffix code* if

- for all $u, v \in S$, if $u \in Suff(v)$, then u = v (suffix code)
- for each $v \in \mathcal{L}(x)$, there exists $u \in S$ such that $v \in Suff(u)$ or $u \in Suff(v)$ (x-maximal).

Working on sums

Lemma

If S is a finite x-maximal suffix code, then

$$\sum_{u \in S} \left(\# \mathrm{E}^R_{\mathsf{x}}(u) - 1 \right) = \# \mathcal{A} - 1 + \sum_{\substack{u \in \mathcal{L}(\mathsf{x}) \\ \mathsf{Suff}(u) \cap S = \emptyset}} m_{\mathsf{x}}(u).$$

Working on sums

Lemma

If S is a finite x-maximal suffix code, then

$$\sum_{u \in S} \left(\# \mathrm{E}^R_{\mathsf{x}}(u) - 1 \right) = \# \mathcal{A} - 1 + \sum_{\substack{u \in \mathcal{L}(\mathsf{x}) \\ \mathsf{Suff}(u) \cap S = \emptyset}} m_{\mathsf{x}}(u).$$

Proposition (G.)

If x is uniformly recurrent, then for every $w \in \mathcal{L}(x)$,

$$\#\mathcal{R}_{\mathsf{X}}(w) = \#\mathcal{A} + \sum_{\substack{u \in \mathcal{L}(\mathsf{X}) \\ |u|_{w} = 0}} m_{\mathsf{X}}(u).$$

Working on sums

Lemma

If S is a finite x-maximal suffix code, then

$$\sum_{u \in S} \left(\# \mathrm{E}_{\mathsf{x}}^{R}(u) - 1 \right) = \# \mathcal{A} - 1 + \sum_{\substack{u \in \mathcal{L}(\mathsf{x}) \\ \mathsf{Suff}(u) \cap S = \emptyset}} m_{\mathsf{x}}(u).$$

Proposition (G.)

If x is uniformly recurrent, then for every $w \in \mathcal{L}(x)$,

$$\#\mathcal{R}_{\mathsf{X}}(w) = \#\mathcal{A} + \sum_{\substack{u \in \mathcal{L}(\mathsf{X}) \\ |u|_{\mathsf{W}} = 0}} m_{\mathsf{X}}(u).$$

Similar sums to study the evolution of factor complexity when applying a morphism.

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

WORDS 2025

 $\mathcal{CR}_{\times}(W) =$

Return words for a set

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x=\cdots 0011002001100220011000110\cdots$$
 and $W=\{00,011\}$ $\mathcal{R}_x(W)=$

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x=\cdots\mid 0011002001100220011000110\cdots$$
 and $W=\{00,011\}$
$$\mathcal{R}_x(W)=$$

$$\mathcal{C}\mathcal{R}_x(W)=$$

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x=\cdots \mid 0 \mid 011002001100220011000110\cdots$$
 and $W=\{00,011\}$
$$\mathcal{R}_x(W)=\{0 \ \mathcal{C}\mathcal{R}_x(W)=\{0011\}$$

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x=\cdots \mid 0 \mid 011 \mid 002001100220011000110\cdots$$
 and $W=\{00,011\}$
$$\mathcal{R}_x(W)=\{0,011\}$$

$$\mathcal{CR}_x(W)=\{0011,01100$$

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x = \cdots \mid 0 \mid 011 \mid 002 \mid 001100220011000110 \cdots$$
 and $W = \{00, 011\}$
$$\mathcal{R}_x(W) = \{0, 011, 002$$

$$\mathcal{CR}_x(W) = \{0011, 01100, 00200$$

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

Condition:

 $W\subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x = \cdots \mid 0 \mid 011 \mid 002 \mid 0 \mid 011 \mid 0022 \mid 0 \mid 011000110 \cdots$$
 and $W = \{00, 011\}$
$$\mathcal{R}_x(W) = \{0, 011, 002, 0022$$

$$\mathcal{C}\mathcal{R}_x(W) = \{0011, 01100, 00200, 002200$$

Condition:

 $W\subseteq\mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x = \cdots \mid 0 \mid 011 \mid 002 \mid 0 \mid 011 \mid 0022 \mid 0 \mid 011 \mid 000110 \cdots$$
 and $W = \{00, 011\}$
$$\mathcal{R}_x(W) = \{0, 011, 002, 0022$$

$$\mathcal{C}\mathcal{R}_x(W) = \{0011, 01100, 00200, 002200$$

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x = \cdots \mid 0 \mid 011 \mid 002 \mid 0 \mid 011 \mid 0022 \mid 0 \mid 011 \mid 0 \mid 00110 \cdots$$
 and $W = \{00, 011\}$
$$\mathcal{R}_x(W) = \{0, 011, 002, 0022$$

$$\mathcal{C}\mathcal{R}_x(W) = \{0011, 01100, 00200, 002200, 0000$$

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

$$x = \cdots \mid 0 \mid 011 \mid 002 \mid 0 \mid 011 \mid 0022 \mid 0 \mid 011 \mid 0 \mid 0 \mid 0110 \cdots$$
 and $W = \{00, 011\}$
$$\mathcal{R}_x(W) = \{0, 011, 002, 0022\}$$

$$\mathcal{C}\mathcal{R}_x(W) = \{0011, 01100, 00200, 002200, 000\}$$

Condition:

 $W \subseteq \mathcal{L}(x)$ is a factor code, i.e. no element is factor of another

Example:

$$x = \dots \mid 0 \mid 011 \mid 002 \mid 0 \mid 011 \mid 0022 \mid 0 \mid 011 \mid 0 \mid 0 \mid 0110 \dots$$
 and
$$W = \{00, 011\}$$

$$\mathcal{R}_x(W) = \{0, 011, 002, 0022\}$$

$$\mathcal{CR}_x(W) = \{0011, 01100, 00200, 002200, 000\}$$

Definition

The complete return words for W are the elements of

$$CR_x(W) = \mathcal{L}(x) \cap WA^+ \cap A^+W \setminus A^+WA^+.$$

Number of return words for a set

Proposition (G.)

If x is uniformly recurrent, then for every factor code $W \subseteq \mathcal{L}(X)$,

$$\#\mathcal{CR}_{\mathsf{x}}(W) = \#W + \sum_{u \in S_W} \left(\#\mathrm{E}^R_{\mathsf{x}}(u) - 1 \right)$$

where
$$S_W = \{u \in \mathcal{L}(x) \cap W\mathcal{A}^* : |u|_W = 1\}.$$

Number of return words for a set

Proposition (G.)

If x is uniformly recurrent, then for every factor code $W \subseteq \mathcal{L}(X)$,

$$\#\mathcal{CR}_{x}(W) = \#W + \sum_{u \in S_{W}} (\#E_{x}^{R}(u) - 1)$$

= $\#W - 1 + \#\mathcal{A} + \sum_{\substack{u \in \mathcal{L}(x) \\ |u|_{W} = 0}} m_{x}(u)$

where
$$S_W = \{u \in \mathcal{L}(x) \cap W\mathcal{A}^* : |u|_W = 1\}.$$

Neutrality

Definition

A word $w \in \mathcal{L}(x)$ is

- neutral if $m_{\times}(w) = 0$,
- weak if $m_{\chi}(w) < 0$,
- strong if $m_X(w) > 0$.

Neutrality

Definition

A word $w \in \mathcal{L}(x)$ is

- neutral if $m_{\times}(w) = 0$,
- weak if $m_x(w) < 0$,
- strong if $m_X(w) > 0$.

Definition

A sequence x is *eventually neutral* if any long enough $w \in \mathcal{L}(x)$ is neutral.

Theorem (Balková, Pelantová, Steiner; Dolce, Perrin) Let x be uniformly recurrent with no weak $w \in \mathcal{L}_{\geq N}(x)$. The following are equivalent:

Theorem (Balková, Pelantová, Steiner; Dolce, Perrin)

Let x be uniformly recurrent with no weak $w \in \mathcal{L}_{\geq N}(x)$. The following are equivalent:

- 1. every $w \in \mathcal{L}_{>N}(x)$ is neutral;
- 2. $\exists K \text{ st. } \#\mathcal{CR}_x(W) = \#W + K \text{ for every } W \subseteq \mathcal{L}_{>N}(x);$
- 3. $\exists K \text{ st. } \#\mathcal{R}_x(w) = 1 + K \text{ for every } w \in \mathcal{L}_{\geq N}(x).$ Moreover, $K = s_x(N)$.

Theorem (Balková, Pelantová, Steiner; Dolce, Perrin)

Let x be uniformly recurrent with no weak $w \in \mathcal{L}_{\geq N}(x)$. The following are equivalent:

- 1. every $w \in \mathcal{L}_{>N}(x)$ is neutral;
- 2. $\exists K \text{ st. } \#\mathcal{CR}_{\mathsf{x}}(W) = \#W + K \text{ for every } W \subseteq \mathcal{L}_{>N}(\mathsf{x});$
- 3. $\exists K \text{ st. } \#\mathcal{R}_x(w) = 1 + K \text{ for every } w \in \mathcal{L}_{\geq N}(x).$ Moreover, $K = s_x(N)$.

:Մ

$$\#\mathcal{CR}_{\times}(W) = \#W + \#\mathcal{A} - 1 + \sum_{\substack{u \in \mathcal{L}(x) \\ |u|_{W} = 0}} m_{\times}(u)$$

Theorem (Balková, Pelantová, Steiner; Dolce, Perrin)

Let x be uniformly recurrent with no weak $w \in \mathcal{L}_{\geq N}(x)$. The following are equivalent:

- 1. every $w \in \mathcal{L}_{>N}(x)$ is neutral;
- 2. $\exists K \text{ st. } \#\mathcal{CR}_{\mathsf{x}}(W) = \#W + K \text{ for every } W \subseteq \mathcal{L}_{>N}(\mathsf{x});$
- 3. $\exists K \text{ st. } \#\mathcal{R}_{\times}(w) = 1 + K \text{ for every } w \in \mathcal{L}_{\geq N}(x).$ Moreover, $K = s_{\times}(N).$

:Մ

$$\#\mathcal{CR}_{\times}(W) = \#W + \#\mathcal{A} - 1 + \sum_{\substack{u \in \mathcal{L}(\mathsf{x}) \\ |u|_{w} = 0}} m_{\mathsf{x}}(u)$$

$$\uparrow$$
: if $m_x(v) > 0$, then $\#\mathcal{R}_x(v) < \#\mathcal{R}_x(va)$ for $a \in \mathcal{E}_x^R(v)$

Proposition (adaptation of Balková, Pelantová, Steiner)

Let x be uniformly recurrent.

1. $\#\mathcal{R}_x(w) = 1$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 0$ (x is periodic).

Proposition (adaptation of Balková, Pelantová, Steiner)

Let x be uniformly recurrent.

- 1. $\#\mathcal{R}_x(w) = 1$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 0$ (x is periodic).
- 2. $\#\mathcal{R}_x(w) = 2$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 1$ (x is quasi-Sturmian).

Proposition (adaptation of Balková, Pelantová, Steiner)

Let x be uniformly recurrent.

- 1. $\#\mathcal{R}_x(w) = 1$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 0$ (x is periodic).
- 2. $\#\mathcal{R}_x(w) = 2$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 1$ (x is quasi-Sturmian).
- 3. $\#\mathcal{R}_x(w) = 3$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 2$.

Proposition (adaptation of Balková, Pelantová, Steiner)

Let x be uniformly recurrent.

- 1. $\#\mathcal{R}_x(w) = 1$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 0$ (x is periodic).
- 2. $\#\mathcal{R}_x(w) = 2$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 1$ (x is quasi-Sturmian).
- 3. $\#\mathcal{R}_x(w) = 3$ for every long enough $w \iff x$ is ev. neutral with $\lim_n s_x(n) = 2$.

Counter-example for $\#\mathcal{R}_x(w) = 4$: Thue-Morse

3. Structure of extensions and return

words

The free group F_A is the natural algebraic extension of A^* with the operations:

• inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

$$(ab^{-1}bac^{-1})^{-1} = ca^{-1}b^{-1}ba^{-1}$$

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

$$(ab^{-1}bac^{-1})^{-1} = ca^{-1}b^{-1}ba^{-1}$$

 $(abba^{-1}) \cdot (ab^{-1}aa) = abba^{-1}ab^{-1}aa$

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

$$(ab^{-1}bac^{-1})^{-1} = ca^{-1}b^{-1}ba^{-1}$$

 $(abba^{-1}) \cdot (ab^{-1}aa) = abba^{-1}ab^{-1}aa$

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

$$(ab^{-1}bac^{-1})^{-1} = ca^{-1}b^{-1}ba^{-1}$$

 $(abba^{-1}) \cdot (ab^{-1}aa) = abbb^{-1}aa$

The free group F_A is the natural algebraic extension of A^* with the operations:

- inversion : $(w_1 w_2 \cdots w_n)^{-1} = w_n^{-1} \cdots w_2^{-1} w_1^{-1}$
- concatenation-cancellation : when concatenating, we erase factors aa^{-1} and $a^{-1}a$.

$$(ab^{-1}bac^{-1})^{-1} = ca^{-1}b^{-1}ba^{-1}$$

 $(abba^{-1}) \cdot (ab^{-1}aa) = abaa$

Definition

A set $S \subseteq F_A$ is

• free if $s_1^{\eta_1} \cdots s_n^{\eta_n} \neq \varepsilon$ for any choice of $n \geq 1$, $s_1, \ldots, s_n \in S$, and of $\eta_1, \ldots, \eta_n \in \{1, -1\}$ such that $\eta_i = \eta_{i+1}$ if $s_i = s_{i+1}$;

Definition

A set $S \subseteq F_A$ is

- free if $s_1^{\eta_1} \cdots s_n^{\eta_n} \neq \varepsilon$ for any choice of $n \geq 1$, $s_1, \ldots, s_n \in S$, and of $\eta_1, \ldots, \eta_n \in \{1, -1\}$ such that $\eta_i = \eta_{i+1}$ if $s_i = s_{i+1}$;
- generating if any element of F_A is obtained as a product of elements of S and their inverses;

Definition

A set $S \subseteq F_A$ is

- free if $s_1^{\eta_1} \cdots s_n^{\eta_n} \neq \varepsilon$ for any choice of $n \geq 1$, $s_1, \ldots, s_n \in S$, and of $\eta_1, \ldots, \eta_n \in \{1, -1\}$ such that $\eta_i = \eta_{i+1}$ if $s_i = s_{i+1}$;
- generating if any element of F_A is obtained as a product of elements of S and their inverses:
- a basis of F_A if it is free and generating.

Definition

A set $S \subseteq F_A$ is

- free if $s_1^{\eta_1} \cdots s_n^{\eta_n} \neq \varepsilon$ for any choice of $n \geq 1$, $s_1, \ldots, s_n \in S$, and of $\eta_1, \ldots, \eta_n \in \{1, -1\}$ such that $\eta_i = \eta_{i+1}$ if $s_i = s_{i+1}$;
- generating if any element of F_A is obtained as a product of elements of S and their inverses:
- a basis of F_A if it is free and generating.

Examples: $S = \{0, 01, 011\}$ is generating:

$$0 \in S$$
 and $1 = (0)^{-1}(01)$

Definition

A set $S \subseteq F_A$ is

- free if $s_1^{\eta_1} \cdots s_n^{\eta_n} \neq \varepsilon$ for any choice of $n \geq 1$, $s_1, \ldots, s_n \in S$, and of $\eta_1, \ldots, \eta_n \in \{1, -1\}$ such that $\eta_i = \eta_{i+1}$ if $s_i = s_{i+1}$;
- generating if any element of F_A is obtained as a product of elements of S and their inverses;
- a basis of F_A if it is free and generating.

Examples: $S = \{0, 01, 011\}$ is generating:

$$0 \in S$$
 and $1 = (0)^{-1}(01)$

but not free:

$$(01)(0)^{-1}(01)(011)^{-1} = \varepsilon.$$

Structure of extensions: extension graph

$$x = \cdots 10010011001001101101 \cdots$$

Structure of extensions: extension graph

$$x = \cdots 10010011001001101100 \cdots$$

Structure of extensions: extension graph

$$x = \cdots 10010011001001001101100 \cdots$$

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

```
00 01 02 02 02
```

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

02

20

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

$$\cdots 010020010020 \cdots$$

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

 $\cdots 010020010020 \cdots$

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

...010020010020...

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

...010020010020...

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

· · · 0100200<mark>100</mark>20 · · ·

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

...010020010020...

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

$\cdots 010020010020 \cdots$

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

 $\cdots 010020010020 \cdots$

Definition

The Rauzy graph of order n is the graph $\Gamma_{\times}(n)$ such that

- the vertices are the elements of $\mathcal{L}_n(x)$;
- there is an edge from u to v with label $a \in \mathcal{A}$ if $av \in u\mathcal{A} \cap \mathcal{L}(x)$.

 $\cdots 010020010020 \cdots$

Dendricity and cie.

Definition

A word $w \in \mathcal{L}(x)$ is

- acyclic if $\mathcal{E}_{\times}(w)$ is acyclic;
- *connected* if $\mathcal{E}_{x}(w)$ is connected;
- dendric if $\mathcal{E}_x(w)$ is a tree.

Dendricity and cie.

Definition

A word $w \in \mathcal{L}(x)$ is

- acyclic if $\mathcal{E}_{x}(w)$ is acyclic;
- *connected* if $\mathcal{E}_{x}(w)$ is connected;
- dendric if $\mathcal{E}_{\times}(w)$ is a tree.

Definition

A sequence x is

- *connected* if every $w \in \mathcal{L}(x)$ is connected;
- *dendric* if every $w \in \mathcal{L}(x)$ is dendric.

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

If x is uniformly recurrent and connected, then $\mathcal{R}_{x}(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

If x is uniformly recurrent and connected, then $\mathcal{R}_x(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Idea of proof:

• for each w, there exists u such that $\langle \mathcal{R}_x(w) \rangle$ contains the group G generated by the paths based on u in $\Gamma_x(|u|)$;

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

If x is uniformly recurrent and connected, then $\mathcal{R}_x(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Idea of proof:

- for each w, there exists u such that $\langle \mathcal{R}_x(w) \rangle$ contains the group G generated by the paths based on u in $\Gamma_x(|u|)$;
- since x is connected, G is also the group generated by the paths based on $u_{[1,n]}$ in $\Gamma_x(n)$;

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

If x is uniformly recurrent and connected, then $\mathcal{R}_x(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Idea of proof:

- for each w, there exists u such that $\langle \mathcal{R}_x(w) \rangle$ contains the group G generated by the paths based on u in $\Gamma_x(|u|)$;
- since x is connected, G is also the group generated by the paths based on $u_{[1,n]}$ in $\Gamma_x(n)$;
- the paths based on ε in $\Gamma_{x}(0)$ generate F_{A} .

Theorem (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

If x is uniformly recurrent and connected, then $\mathcal{R}_x(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Idea of proof:

- for each w, there exists u such that $\langle \mathcal{R}_x(w) \rangle$ contains the group G generated by the paths based on u in $\Gamma_x(|u|)$;
- since x is connected, G is also the group generated by the paths based on $u_{[1,n]}$ in $\Gamma_x(n)$;
- the paths based on ε in $\Gamma_{x}(0)$ generate F_{A} .

Theorem (Goulet-Ouellet)

If x is uniformly recurrent and suffix-connected, then $\mathcal{R}_x(w)$ generates $F_{\mathcal{A}}$ for every $w \in \mathcal{L}(x)$.

Theorem (Berthé et al. & G., Goulet-Ouellet, Leroy, Stas) Let x be uniformly recurrent. The following assertions are equivalent:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
- 3. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a tame basis of F_A .

Theorem (Berthé et al. & G., Goulet-Ouellet, Leroy, Stas)

Let x be uniformly recurrent. The following assertions are equivalent:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
- 3. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a tame basis of F_A .

Proof that $1 \implies 2$:

Theorem (Berthé et al. & G., Goulet-Ouellet, Leroy, Stas)

Let x be uniformly recurrent. The following assertions are equivalent:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
- 3. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a tame basis of F_A .

Proof that $1 \implies 2$:

• x connected $\implies \mathcal{R}_x(w)$ generates $\mathcal{F}_{\mathcal{A}}$

Theorem (Berthé et al. & G., Goulet-Ouellet, Leroy, Stas)

Let x be uniformly recurrent. The following assertions are

Let x be uniformly recurrent. The following assertions are equivalent:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
- 3. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a tame basis of F_A .

Proof that $1 \implies 2$:

- x connected $\implies \mathcal{R}_x(w)$ generates $\mathcal{F}_{\mathcal{A}}$
- x dendric $\implies x$ neutral $\implies \#\mathcal{R}_x(w) = \#\mathcal{A}$

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
 - 2. \implies x is connected:

• $x \text{ connected} + \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x \text{ dendric}$:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{\mathcal{A}} \implies \varepsilon$ is connected
 - x connected $+ \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x$ dendric:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{\mathcal{A}} \implies \varepsilon$ is connected
 - ε connected in $D_w(x) \implies w$ connected in x
 - x connected $+ \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x$ dendric:

- 1. x is dendric:
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_{x}(w)$ is a basis of F_{A} ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{A} \implies \varepsilon$ is connected
 - ε connected in $D_w(x) \implies w$ connected in x
 - 2. $\implies \mathcal{R}_{D_w(x)}(a)$ generates $F_{\mathcal{L}_1(D_w(x))}$ for any letter a of $D_w(x)$
 - x connected $+ \# \mathcal{R}_x(w) = \# \mathcal{A} \implies x$ dendric:

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{\mathcal{A}} \implies \varepsilon$ is connected
 - ε connected in $D_w(x) \implies w$ connected in x
 - 2. $\implies \mathcal{R}_{D_w(x)}(a)$ generates $F_{\mathcal{L}_1(D_w(x))}$ for any letter a of $D_w(x)$
 - $x \text{ connected} + \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x \text{ dendric}$:
 - x connected \implies no weak factor

- 1. x is dendric:
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_{x}(w)$ is a basis of F_{A} ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{A} \implies \varepsilon$ is connected
 - ε connected in $D_w(x) \implies w$ connected in x
 - 2. $\implies \mathcal{R}_{D_w(x)}(a)$ generates $F_{\mathcal{L}_1(D_w(x))}$ for any letter a of $D_w(x)$
 - x connected $+ \# \mathcal{R}_x(w) = \# \mathcal{A} \implies x$ dendric:
 - x connected \implies no weak factor
 - no weak factor $+ \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x$ neutral

- 1. x is dendric;
- 2. for every $w \in \mathcal{L}(x)$, $\mathcal{R}_x(w)$ is a basis of F_A ;
 - 2. \implies x is connected:
 - if a is a letter: $\mathcal{R}_{x}(a)$ generates $F_{\mathcal{A}} \implies \varepsilon$ is connected
 - ε connected in $D_w(x) \implies w$ connected in x
 - 2. $\implies \mathcal{R}_{D_w(x)}(a)$ generates $F_{\mathcal{L}_1(D_w(x))}$ for any letter a of $D_w(x)$
 - $x \text{ connected} + \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x \text{ dendric}$:
 - x connected \implies no weak factor
 - no weak factor $+ \#\mathcal{R}_x(w) = \#\mathcal{A} \implies x$ neutral
 - x connected + x neutral $\implies x$ dendric

Property	$x \implies D_w(x)$
$\#\mathcal{R}_{x}(\mathit{u}) = \mathit{K}$ for every u	✓

Property	$x \implies D_w(x)$
$\#\mathcal{R}_{x}(u) = K$ for every long enough u	\checkmark

Property	$x \implies D_w(x)$
$\#\mathcal{R}_{x}(u) = K$ for every long enough u	√
eventually neutral (resp., weak or neutral,	
strong or neutral)	'

Property	$x \implies D_w(x)$
$\#\mathcal{R}_{x}(u) = K$ for every long enough u	√
eventually neutral (resp., weak or neutral,	
strong or neutral)	v
eventually dendric (resp., acyclic, connected)	√

Property	$x \implies D_w(x)$
$\#\mathcal{R}_{x}(u) = K$ for every long enough u	√
eventually neutral (resp., weak or neutral,	
strong or neutral)	v
eventually dendric (resp., acyclic, connected)	✓
$\mathcal{R}_{\scriptscriptstyle X}(u)$ generates the free group over the	<u> </u>
alphabet for every <i>u</i>	^

• Is there a formula for the number of return words for a set?

- Is there a formula for the number of return words for a set?
- What can we say about freeness of return words?

- Is there a formula for the number of return words for a set?
- What can we say about freeness of return words?
- Are there other link between return words and extensions?

- Is there a formula for the number of return words for a set?
- What can we say about freeness of return words?
- Are there other link between return words and extensions?

Thank you for your attention!